You know what is a z score when you know why people invented it.

As usual, we start with a theoretical motivation. There is a myriad of distributions. Even if we stay within the set of normal distributions, there is an infinite number of them, indexed by their means and standard deviations . When computers did not exist, people had to use statistical tables. It was impossible to produce statistical tables for an infinite number of distributions, so the problem was to reduce the case of general and to that of and .

But we know that that can be achieved by centering and scaling. Combining these two transformations, we obtain the definition of the z score:

The transformation leading from to its z score sometimes is called standardization.

This site promises to tell you the truth about undergraduate statistics. The truth about the z score is that:

(1) Standardization can be applied to any variable with finite variance, not only to normal variables. The z score is a standard normal variable only when the original variable is normal, contrary to what some sites say.

(2) With modern computers, standardization is not necessary to find critical values for , see Chapter 14 of my book.

[…] be a nice theoretical result, but why do I need it? The motivation is similar to the one we use for introducing the z score. There is a myriad of distributions. Only some standard distributions have been tabulated. Suppose […]

[…] the sum is normal. The variable in (1) is normal as a linear transformation of this sum. Since its mean is zero and its variance is 1, it is a standard normal. We have proved Fact 1. The proofs of Facts 2 and 3 are much more […]

[…] be a nice theoretical result, but why do I need it? The motivation is similar to the one we use for introducing the z score. There is a myriad of distributions. Only some standard distributions have been tabulated. Suppose […]

[…] the sum is normal. The variable in (1) is normal as a linear transformation of this sum. Since its mean is zero and its variance is 1, it is a standard normal. We have proved Fact 1. The proofs of Facts 2 and 3 are much more […]