9
Dec 16

Ditch statistical tables if you have a computer

You don't need statistical tables if you have Excel or Mathematica. Here I give the relevant Excel and Mathematica functions described in Chapter 14 of my book. You can save all the formulas in one spreadsheet or notebook and use it multiple times.

Cumulative Distribution Function of the Standard Normal Distribution

For a given real z, the value of the distribution function of the standard normal is
F(z)=\frac{1}{\sqrt{2\pi }}\int_{-\infty }^{z}\exp (-t^{2}/2)dt.

In Excel, use the formula =NORM.S.DIST(z,TRUE).

In Mathematica, enter CDF[NormalDistribution[0,1],z]

Probability Function of the Binomial Distribution

For given number of successes x, number of trials n and probability p the probability is

P(Binomial=x)=C_{x}^{n}p^{x}(1-p)^{n-x}.

In Excel, use the formula =BINOM.DIST(x,n,p,FALSE)

In Mathematica, enter PDF[BinomialDistribution[n,p],x]

Cumulative Binomial Probabilities

For a given cut-off value x, number of trials n and probability p the cumulative probability is

P(Binomial\leq x)=\sum_{t=0}^{x}C_{t}^{n}p^{t}(1-p)^{n-t}.
In Excel, use the formula =BINOM.DIST(x,n,p,TRUE).

In Mathematica, enter CDF[BinomialDistribution[n,p],x]

Values of the exponential function e^{-\lambda}

In Excel, use the formula =EXP(-lambda)

In Mathematica, enter Exp[-lambda]

Individual Poisson Probabilities

For given number of successes x and arrival rate \lambda the probability is

P(Poisson=x)=\frac{e^{-\lambda }\lambda^{x}}{x!}.
In Excel, use the formula =POISSON.DIST(x,lambda,FALSE)

In Mathematica, enter PDF[PoissonDistribution[lambda],x]

Cumulative Poisson Probabilities

For given cut-off x and arrival rate \lambda the cumulative probability is

P(Poisson\leq x)=\sum_{t=0}^{x}\frac{e^{-\lambda }\lambda ^{t}}{t!}.
In Excel, use the formula =POISSON.DIST(x,lambda,TRUE)

In Mathematica, enter CDF[PoissonDistribution[lambda],x]

Cutoff Points of the Chi-Square Distribution Function

For given probability of the right tail \alpha and degrees of freedom \nu, the cut-off value (critical value) \chi _{\nu,\alpha }^{2} is a solution of the equation
P(\chi _{\nu}^{2}>\chi _{\nu,\alpha }^{2})=\alpha .
In Excel, use the formula =CHISQ.INV.RT(alpha,v)

In Mathematica, enter InverseCDF[ChiSquareDistribution[v],1-alpha]

Cutoff Points for the Student’s t Distribution

For given probability of the right tail \alpha and degrees of freedom \nu, the cut-off value t_{\nu,\alpha } is a solution of the equation P(t_{\nu}>t_{\nu,\alpha })=\alpha.
In Excel, use the formula =T.INV(1-alpha,v)

In Mathematica, enter InverseCDF[StudentTDistribution[v],1-alpha]

Cutoff Points for the F Distribution

For given probability of the right tail \alpha , degrees of freedom v_1 (numerator) and v_2 (denominator), the cut-off value F_{v_1,v_2,\alpha } is a solution of the equation P(F_{v_1,v_2}>F_{v_1,v_2,\alpha })=\alpha.

In Excel, use the formula =F.INV.RT(alpha,v1,v2)

In Mathematica, enter InverseCDF[FRatioDistribution[v1,v2],1-alpha]

One Response for "Ditch statistical tables if you have a computer"

  1. […] This book can be used by an instructor who is not constrained by the College Board curriculum. Since in our program we have a strong Econometrics course, Chapters 12, 13, 16 should be skipped. On the other hand, almost all material from Chapters 1-11 should be given with derivations. When students have access to Excel or Internet, instead of statistical tables students can use Excel or Mathematica functions. […]

Leave a Reply

You must be logged in to post a comment.