Sep 16

Definitions of chi-square, t statistic and F statistic

Definitions of the standard normal distribution and independence can be combined to produce definitions of chi-square, t statistic and F statistic. The similarity of the definitions makes them easier to study.

Independence of continuous random variables

Definition of independent discrete random variables easily modifies for the continuous case. Let X,Y be two continuous random variables with densities p_X,\ p_Y, respectively. We say that these variables are independent if the density p_{X,Y} of the pair (X,Y) is a product of individual densities:

(1) p_{X,Y}(s,t)=p_X(s)p_Y(t) for all s,t.

As in this post, equation (1) can be understood in two ways. If (1) is given, then X,Y are independent. Conversely, we if want them to be independent, we can define the density of the pair by equation (1). This definition readily generalizes for the case of many variables. In particular, if we want variables z_1,...,z_n to be standard normal and independent, we say that each of them has density defined here and the joint density p_{z_1,...,z_n} is a product of individual densities.

Definition of chi-square variable


Figure 1. chi-square with 1 degree of freedom

Let z_1,...,z_n be standard normal and independent. Then the variable \chi^2_n=z_1^2+...+z_n^2 is called a chi-square variable with n degrees of freedom. Obviously, \chi^2_n\ge 0, which means that its density is zero to the left of the origin. For low values of degrees of freedom, the density is not bounded near the origin, see Figure 1.

Definition of t distribution


Figure 2. t distribution and standard normal compared

Let z_0,z_1,...,z_n be standard normal and independent. Then the variable t_n=\frac{z_0}{\sqrt{(z_1^2+...+z_n^2)/n}} is called a t distribution with n degrees of freedom. The density of the t distribution is bell-shaped and for low n has fatter tails than the standard normal. For high n, it approaches that of the standard normal, see Figure 2.

Definition of F distribution


Figure 3. F distribution with (1,m) degrees of freedom

Let u_1,...,u_n,v_1,...,v_m be standard normal and independent. Then the variable F_{n,m}=\frac{(u_1^2+...+u_n^2)/n}{(v_1^2+...+v_m^2)/m} is called an F distribution with (n,m) degrees of freedom. It is nonnegative and its density is zero to the left of the origin. When n is low, the density is not bounded in the neighborhood of zero, see Figure 3.

The Mathematica file and video illustrate better the densities of these three variables.


  1. If \chi^2_n and \chi^2_m are independent, then \chi^2_n+\chi^2_m is \chi^2_{n+m} (addition rule). This rule is applied in the theory of ANOVA models.
  2. t_n^2=F_{1,n}. This is an easy proof of equation (2.71) from Introduction to Econometrics, by Christopher Dougherty, published by Oxford University Press, UK, in 2016.

Leave a Reply

You must be logged in to post a comment.