Roadmap for studying matrix multiplication
Roadmap
In a way, multiplication of numbers is similar to summation. More precisely, replacing the addition/subtraction with multiplication/division and zero with unity we have the following properties:
A) Commutativity: for any two numbers
B) Associativity: for any three numbers
C) Existence of unity: there is a special number, denoted such that
for any number
D) Existence of an inverse number: for any number there is another number, denoted
, such that
The new element is that in D) there is an existence condition
E) Distributivity (link between summation and multiplication). for any three numbers
Matrix multiplication is more challenging than summation. We check one by one which of these properties hold for matrices and which do not. For most of this, considering matrices is sufficient.
Commutativity of matrices
Global idea 3. Among all matrices, symmetric square matrices have properties most close to those of real numbers. A full disclosure of this statement would require a foray into imaginary numbers, which I want to avoid for now.
Surprise #1. In general, commutativity is not true for matrix multiplication.
Proof. To prove this type of statement, we have to produce an example of matrices such that A trivial possibility is to choose rectangular
so that both products
and
exist but have different sizes. They will not be equal. A more interesting example would be to find square matrices that don't commute. Remembering Global Idea 3, bad matrices should be looked for among asymmetric matrices. Therefore let us put
Also let
(for
I first took a general
matrix, found the two products and then chose the elements of
to make the example simpler.) The equations
prove the statement.
Associativity of matrices
The property looks like this: for any three matrices
These can be any compatible, not necessarily square, matrices.
Statement. Associativity is true.
No surprises here, no proofs either. Matrix algebra is full of long boring proofs most of which are better skipped, as long as you understand the meaning.
Distributivity
The property looks like this: for any three matrices
These can be any compatible, not necessarily square, matrices. Since there is no commutativity, we have to add that
.
Statement. Distributivity is true.
Again, no surprises and no proofs either.
Leave a Reply
You must be logged in to post a comment.