Blueprint for exam versions
This is the exam I administered in my class in Spring 2022. By replacing the Poisson distribution with other random variables the UoL examiners can obtain a large variety of versions with which to torture Advanced Statistics students. On the other hand, for the students the answers below can be a blueprint to fend off any assaults.
During the semester my students were encouraged to analyze and collect information in documents typed in Scientific Word or LyX. The exam was an open-book online assessment. Papers typed in Scientific Word or LyX were preferred and copying from previous analysis was welcomed. This policy would be my preference if I were to study a subject as complex as Advanced Statistics. The students were given just two hours on the assumption that they had done the preparations diligently. Below I give the model answers right after the questions.
Midterm Spring 2022
You have to clearly state all required theoretical facts. Number all equations that you need to use in later calculations and reference them as necessary. Answer the questions in the order they are asked. When you don't know the answer, leave some space. For each unexplained fact I subtract one point. Put your name in the file name.
In questions 1-9 is the Poisson variable.
Question 1
Define and derive the population mean and population variance of the sum
where
is an i.i.d. sample from
.
Answer. is defined by
Using
and
(ST2133 p.80) we have
(by independence and identical distribution). [Some students derived
instead of respective equations for sample means].
Question 2
Derive the MGF of the standardized sample mean.
Answer. Knowing this derivation is a must because it is a combination of three important facts.
a) Let Then
so standardizing
and
gives the same result.
b) The MGF of is expressed through the MGF of
:
(independence) (identical distribution)
c) If is a linear transformation of
then
When answering the question we assume any i.i.d. sample from a population with mean and population variance
:
Putting in c)
and using a) we get
(using b) and
)
This is a general result which for the Poisson distribution can be specified as follows. From ST2133, example 3.38 we know that . Therefore, we obtain
[Instead of some students gave
.]
Question 3
Derive the cumulant generating function of the standardized sample mean.
Answer. Again, there are a couple of useful general facts.
I) Decomposition of MGF around zero. The series leads to
where are moments of
and
Differentiating this equation yields
and setting gives the rule for finding moments from MGF:
II) Decomposition of the cumulant generating function around zero. can also be decomposed into its Taylor series:
where the coefficients are called cumulants and can be found using
. Since
and
we have
Thus, for any random variable with mean
and variance
we have
terms of higher order for
small.
III) If then by c)
IV) By b)
Using III), and then IV) we have
For the last term on the right we use the approximation around zero from II):
[Important. Why the above steps are necessary? Passing from the series to the series for
is not straightforward and can easily lead to errors. It is not advisable in case of the Poisson to derive
from
.]
Question 4
Prove the central limit theorem using the cumulant generating function you obtained.
Answer. In the previous question we proved that around zero
This implies that
(1) for each
around zero.
But we know that for a standard normal its MGF is
(ST2133 example 3.42) and hence for the standard normal
(2)
Theorem (link between pointwise convergence of MGFs of and convergence in distribution of
) Let
be a sequence of random variables and let
be some random variable. If
converges for each
from a neighborhood of zero to
, then
converges in distribution to
Using (1), (2) and this theorem we finish the proof that converges in distribution to the standard normal, which is the central limit theorem.
Question 5
State the factorization theorem and apply it to show that is a sufficient statistic.
Answer. The solution is given on p.180 of ST2134. For the joint density is
(3)
To satisfy the Fisher-Neyman factorization theorem set
and then we see that is a sufficient statistic for
Question 6
Find a minimal sufficient statistic for stating all necessary theoretical facts.
Answer. Characterization of minimal sufficiency A statistic is minimal sufficient if and only if level sets of
coincide with sets on which the ratio
does not depend on
From (3)
The expression on the right does not depend on if and only of
The last condition describes level sets of
Thus it is minimal sufficient.
Question 7
Find the Method of Moments estimator of the population mean.
Answer. The idea of the method is to take some populational property (for example, ) and replace the population characteristic (in this case
) by its sample analog (
) to obtain a MM estimator. In our case
[Try to do this for the Gamma distribution].
Question 8
Find the Fisher information.
Answer. From Problem 5 the log-likelihood is
Hence the score function is (see Example 2.30 in ST2134)
Then
and the Fisher information is
Question 9
Derive the Cramer-Rao lower bound for for a random sample.
Answer. (See Example 3.17 in ST2134) Since is an unbiased estimator of
by Problem 1, from the Cramer-Rao theorem we know that
and in fact by Problem 1 this lower bound is attained.